Obeldesivir Is Efficacious as Oral Postexposure Prophylaxis for Sudan Ebolavirus and Marburg Virus Infections in Nonhuman Primates

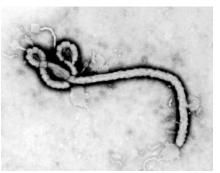
<u>Victor C Chu</u>¹, Robert W Cross^{2,3}, Courtney Woolsey^{2,3}, Darius Babusis¹, Roy Bannister¹, Meghan S Vermillion¹, Romas Geleziunas¹, Kimberly T Barrett¹, Elaine Bunyan¹, Anh-Quan Nguyen¹, Tomas Cihlar¹, Danielle P Porter¹, Abhishek N Prasad^{2,3}, Daniel J Deer^{2,3}, Viktoriya Borisevich^{2,3}, Krystle N Agans^{2,3}, Jasmine Martinez^{2,3}, Mack B Harrison^{2,3}, Natalie S Dobias^{2,3}, Karla A Fenton^{2,3}, John P Bilello¹, Thomas W Geisbert^{2,3}

¹Gilead Sciences, Inc., Foster City, CA, USA; ²Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; ³Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.

Disclosures

- Victor C Chu, Darius Babusis, Roy Bannister, Meghan S Vermillion, Romas Geleziunas,
 Kimberly T Barrett, Elaine Bunyan, Anh-Quan Nguyen, Tomas Cihlar, Danielle P Porter, and
 John P Bilello are paid employees of Gilead Sciences, Inc., and may own company stock.
- All other authors declare no competing interests.

Filoviruses


- Negative-sense single-stranded RNA viruses¹
- *Filoviridae* family^{1,2}
 - Ebolaviruses: Zaire (EBOV), Sudan (SUDV), and others²
 - Marburg virus (MARV)^{1,2}

Filovirus disease outbreaks^{3,4}

Filovirus	Ebola		Markura
	Total	Sudan Only	Marburg
First report	1976	1976	1967
Outbreaks	35	8	17
Total cases	34,935	942	523
Total deaths	15,385	480	420
CFR (%)	25-90	34-65	23-90

- Outbreaks occurred mainly across sub-Saharan Africa region^{3,4}
 - Six (2 EBOV, 1 SUDV, 3 MARV) outbreaks in 2022 to 2023^{3,5}

Ebolavirus micrograph⁹

Filoviruses

- Negative-sense single-stranded RNA viruses¹
- *Filoviridae* family^{1,2}
 - Ebolaviruses: Zaire (EBOV), Sudan (SUDV), and others²
 - Marburg virus (MARV)^{1,2}
- Outbreaks occurred mainly across sub-Saharan Africa region^{3,4}
 - Six (2 EBOV, 1 SUDV, 3 MARV) outbreaks in 2022 to 2023^{3,5}
- Infections cause viral haemorrhagic fever disease (VHF): fever, fatigue, hemorrhaging/bleeding/bruising, gastrointestinal symptoms, and death⁶

Ebolavirus micrograph⁹

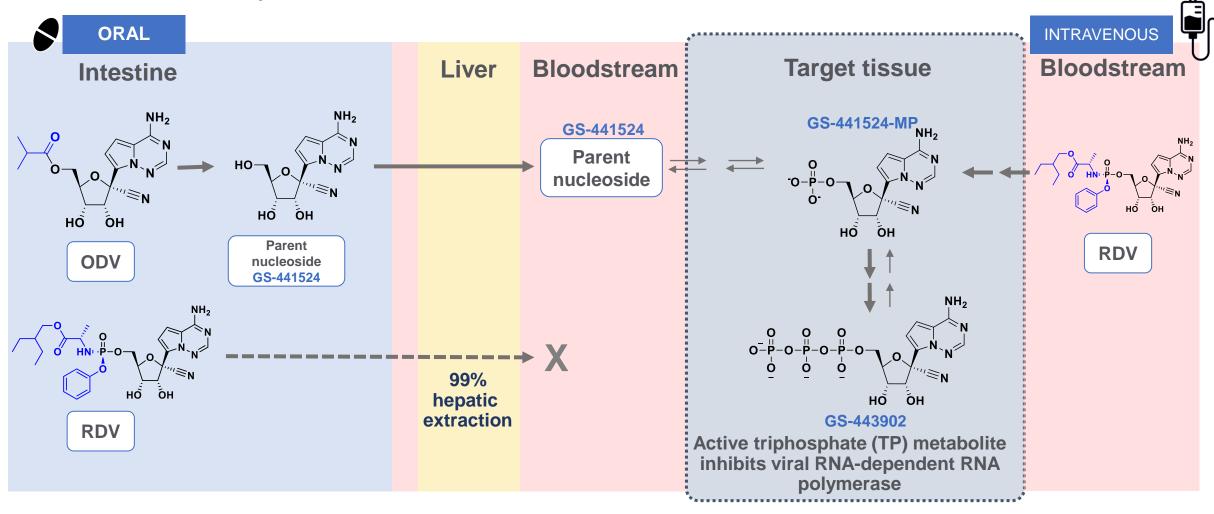
Filovirus disease outbreaks^{3,4}

Filovirus	Ebola		Morbura
	Total	Sudan Only	Marburg
First report	1976	1976	1967
Outbreaks	35	8	17
Total cases	34,935	942	523
Total deaths	15,385	480	420
CFR (%)	25-90	34-65	23-90

Filoviruses

- Negative-sense single-stranded RNA viruses¹
- Filoviridae family^{1,2}
 - Ebolaviruses: Zaire (EBOV), Sudan (SUDV), and others²
 - Marburg virus (MARV)^{1,2}
- Outbreaks occurred mainly across sub-Saharan Africa region^{3,4}
 - Six (2 EBOV, 1 SUDV, 3 MARV) outbreaks in 2022 to 2023^{3,5}
- Infections cause viral haemorrhagic fever disease (VHF): fever, fatigue, hemorrhaging/bleeding/bruising, gastrointestinal symptoms, and death⁶
- Clear unmet medical needs:
 - No approved antiviral or vaccines for SUDV or MARV¹
 - No pan-filovirus countermeasures available⁷
 - Approved EBOV therapeutics require cold-chain storage and parenteral administration^{1,6,8}
 - No approved oral therapies or postexposure prophylaxis (PEP)

Ebolavirus micrograph⁹



Filovirus disease outbreaks^{3,4}

Filovirus	Ebola		Morbura
	Total	Sudan Only	Marburg
First report	1976	1976	1967
Outbreaks	35	8	17
Total cases	34,935	942	523
Total deaths	15,385	480	420
CFR (%)	25-90	34-65	23-90

Obeldesivir (ODV): An Oral Prodrug of GS-441524, the Parent Nucleoside of Remdesivir (RDV)

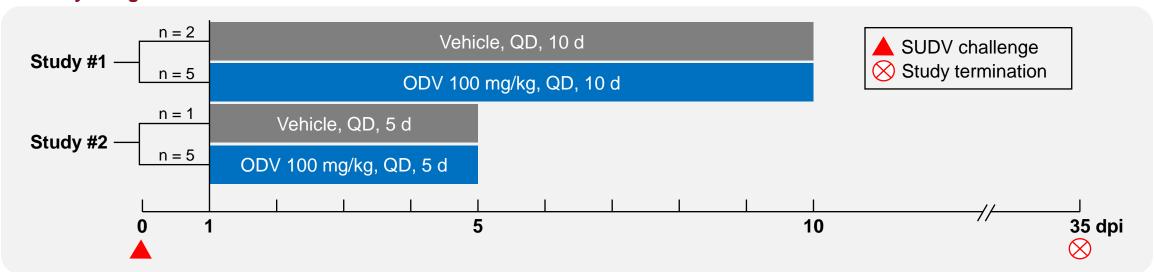
Metabolic Activation Pathways of RDV and ODV

MP, monophosphate; ODV, obeldesivir; RDV, remdesivir.

ODV Safety and Pharmacokinetics (PK)

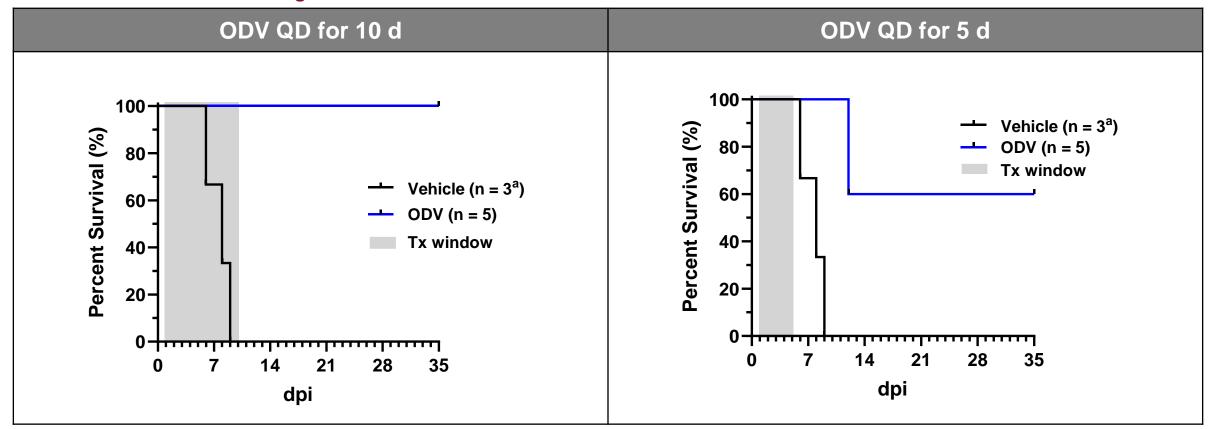
Phase 1 Safety and PK in Healthy Volunteers¹

- ODV was safe and well tolerated following single-dose (100-1600 mg ODV) and multiple-dose (500 mg twice daily [BID] or 900 mg once daily [QD] x 5 days) oral administration
- Oral administration of ODV resulted in high plasma exposures of the major metabolite, GS-441524, with minimal detectable levels of the parent prodrug
- GS-441524 plasma exposures were linear and dose proportional across the dose range of 100 to 900 mg and less than dose proportional across the 900 to 1600 mg doses

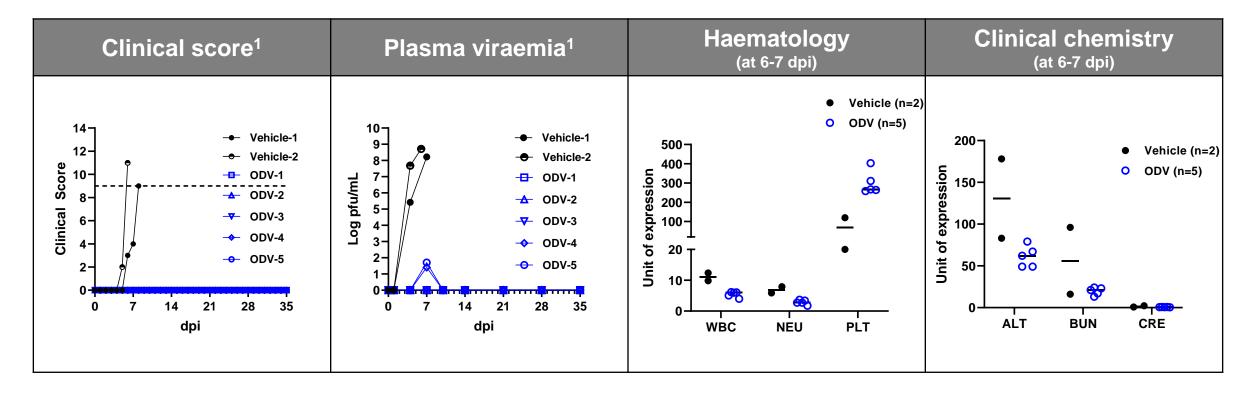

PK in Nonhuman Primates (NHPs)

 ODV administered at 100 mg/kg QD in cynomolgus macaques yields similar daily GS-441524 plasma exposures as those observed in recommended human dose at 350 mg BID

Evaluation of ODV Efficacy as PEP for SUDV in Cynomolgus Macaques


- Challenge: SUDV (Gulu strain), intramuscular (IM) injection with 1000 plaque-forming units (pfu)
- Treatment: Oral gavage QD with 100 mg/kg ODV versus vehicle control for 10 or 5 days
- Treatment initiation: 1 day post infection (dpi)
- Primary endpoint: Survival at 35 dpi

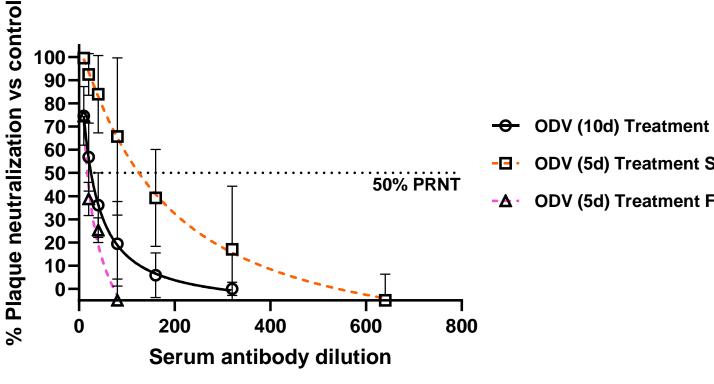
Study Design


Oral ODV QD for 10 Days Results in 100% NHP Survival From SUDV Infection

Survival Curves of SUDV-challenged NHPs Treated With ODV Versus Vehicle¹

Effect of 10-day ODV Administration on Disease Manifestations and Viraemia

Clinical Scores, Viral Loads, and 6-7 dpi Haematological and Serum Chemistry Parameters in SUDV-challenged NHPs Treated With ODV vs. Vehicle Controls


ALT, alanine aminotransferase; BUN, blood urea nitrogen; CRE, creatinine; dpi, days post infection; NEU, neutrophil; NHP, nonhuman primate; ODV, obeldesivir; pfu, plaque-forming unit; PLT, platelet; SUDV, Sudan ebolavirus; WBC, white blood cell.

^{1.} Cross RW, et al. *Science*. 2024;383(6688):eadk6176. Reprinted with permission from AAAS.

Strong Neutralising Antibody Titres From Surviving Animals Post ODV Administration¹

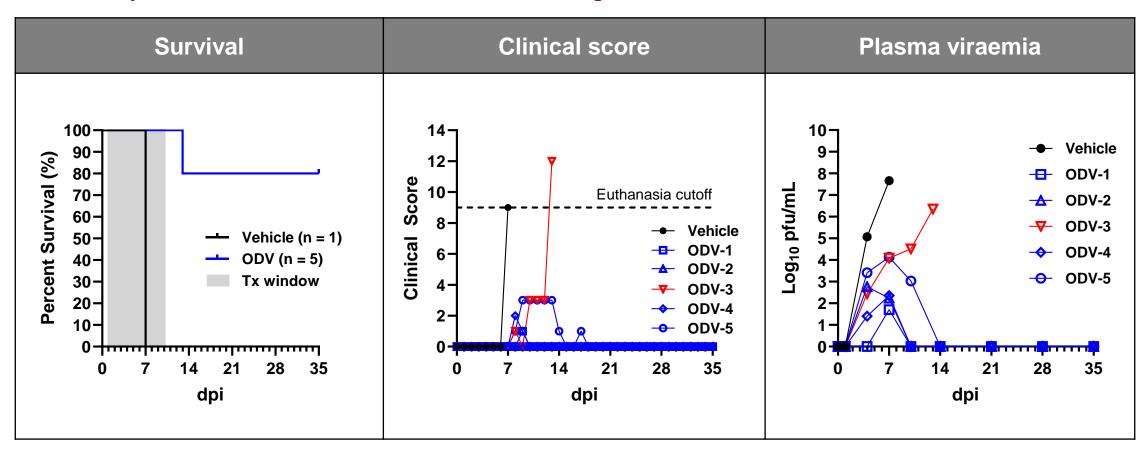
Endpoint 50% Plaque Reduction Neutralisation Test (PRNT50) From SUDV-challenged NHPs

1. Cross RW, et al. Science. 2024;383(6688):eadk6176.

- **ODV (10d) Treatment Success**
- **ODV (5d) Treatment Success**
- **ODV (5d) Treatment Failure**
- Highest endpoint neutralising antibody titre was observed from 3 surviving animals treated with 5-day ODV treatment regimen
- Despite successful ODV treatment and profound reduction of viraemia, animals still mount neutralising antibody response

ODV Efficacy Evaluation as PEP for MARV Infection in Cynomolgus Macaques

- Challenge: MARV (Angola strain), IM injection with 1000 pfu
- Treatment: Oral gavage QD with 100 mg/kg ODV versus vehicle control for 10 days
- Treatment initiation: 1 dpi
- Primary endpoint: Survival at 35 dpi



10

35 dpi

10-day ODV QD Administration Confers 80% NHP Survival From MARV Infection

Survival Analysis, Clinical Scores, and Viral Loads in SUDV-challenged NHPs Treated With ODV Versus Vehicle

Conclusions

- Currently, there are no oral treatments for filovirus infections
- ODV is efficacious as PEP for both SUDV- and MARV-infected cynomolgus macaques at doses providing exposures similar to those provided by doses tested and found safe in humans
 - 10-day course of ODV 100 mg/kg (starting 1 day after inoculation) showed 100% and 80% survival, compared to 0% in vehicle controls in animals infected with SUDV and MARV, respectively
 - 10-day course of ODV suppressed viral replication
 - All surviving animals became aviraemic by 14 dpi and remained aviraemic until the end of the study at 35 dpi
 - ODV delayed or prevented the onset of disease
 - Surviving animals treated with ODV showed high titres of neutralising antibodies
- These findings warrant further evaluation of ODV as an easily administered oral PEP and treatment for filoviruses

Acknowledgements

University of Texas Medical Branch &

Galveston National Laboratory

Thomas W Geisbert

Krystle N Agans

Viktoriya Borisevich

Robert W Cross

Daniel J Deer

Natalie S Dobias

Karla A Fenton

Mack B Harrison

Abhishek N Prasad

Jasmine Martinez

Courtney Woolsey

Gilead Sciences, Inc.

Darius Babusis

Reena Bajpai

Roy Bannister

Kimberly T Barrett

John P Bilello

Elaine Bunyan

Jack Chang

Tomas Cihlar

Romas Geleziunas

Humza Kudiya

Jasmine Moshiri

Yoshihiko Murata

Anh-Quan Nguyen

Chi-Chi Peng

Danielle P Porter

Meghan S Vermillion

Sam Zilberman

- These studies were funded by National Institute of Allergy and Infectious Diseases (NIAID) grant U19AI142785 and Gilead Sciences, Inc.
- All authors contributed to and approved the presentation; medical writing support was provided by Catherine Bautista, PhD, of Lumanity Communications Inc., and was funded by Gilead Sciences, Inc.
- Correspondence: Victor C. Chu, Victor.Chu2@gilead.com

Copies of this presentation obtained through QR (Quick Response) are for personal use only and may not be reproduced without written permission of the authors.

